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Abstract-Large deflection theory is used to determine when wrinkling occurs in a simply
supponed circular elastic plate loaded at the center by a spherical punch. If the edges are free
to displace radially. thin plates stamped by intermediate radius punches will develop radial
wrinkles near the edge at a central deflection approximately equal to four plate thicknesses.
wolh == 4. Initially. there are either three or four wrinkles. but the number increases if the central
deflection is increased. With larger radius punches. thin plates do not wrinkle. It is calculated
that elastic wrinkling occurs in thin plates (alh > 80) when crlRh > 8. where a is the plate
radius and R is the punch radius.

INTRODUCTION

A circular plate that is simply supported at the edge is pressed transversely near the
center so it stretches and bends to a shallow bowl shape. The in-plane circumferential
stress component near the center is tensile, while near the edge, this stress is com­
pressive. As out-of-plane deflection of the center increases, the compressive circum­
ferential stress near the edge increases in both magnitude and extent. When these
stresses are sufficiently large and extensive, the equilibrium configuration changes from
an axisymmetric bowl to a bowl with radial corrugations near the edge; that is, the
edge of the plate buckles. This buckling, which does not reduce the load-carrying
capacity of the plate, is called wrinkling.

The elastic wrinkling load and mode shape for a simply supported circular plate
will be determined by a method based on energy integrals. The potential energy of the
stamped plate is the difference between the strain energy associated with bending and
stretching to a deformed configuration and the work done by the applied loads. In this
energy method, the deformed configuration is represented by a series of deformation
modes which are ideally complete and satisfy the boundary conditions. In practice.
series that are truncated or that do not satisfy all the boundary conditions result in
approximate solutions. This analysis calculates the displacement field using the term
which minimizes the potential energy from a series approximation for the wrinkled
shape.

ANALYSIS

In this investigation, an axisymmetric load is applied to the middle of an initially
flat, circular plate by a spherical punch, as shown in Fig. I. The punch initially contacts
the flat plate at the centre but as the load increases and the plate deflects, the contact
region between punch and plate moves outward[t]. With an elastic plate that is simply
supported, there is contact with a spherical punch within a circle of radius b (Fig. 2).

ELASTIC DEFLECTION

If the plate of radius a and thickness h is slowly stamped by a spherical punch of
radius R, the portion of plate inside the punch contact circle conforms to the punch
and has curvature

I P [(I - v) ( b2
) b]

K, = Ko = R = 41fD 2(1 + v) I - a2 - In;; for r < b. (I)

t Present address: Depanment of Mechanics. Peking University, Beijing. China.
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Fig. I. Punch contacting circular plate.

Fig. 2. Contact force distribution for contact radius b.

This curvature results from a constant moment along r = b which is proportional to
the total punch force P divided by the flexural rigidity of the plate D = Eh3112(1 ­
v2), where E is Young's modulus and v is Poisson's ratio for the plate material. The
remainder of the plate r > b is a simply supported annulus subjected to the same moment
and a transverse line force PI2Trb along r = b.

We have previously shown that the spherical punch pressure on a circular plate
may be represented by the union of this pair of edge-loaded plate solutions[l]. Thus.
the deflection of an elastic plate stamped by a spherjcal punch may be shown to be [2.
p.64]

L [(b2 .2) I!!. (2 _ b2) (3 + v)a
2

- (I - v)r]
8TrD +, n a + a 2(1 + v)a2 '

w = for 0 :::s; r :::s; b; (2)

8:D {(a
2

- r) [1 + i(\ ~ v~) (1 - ~:)] + (b
2 + r) In ~} ,

for b :::s; r :::s; a.

This transverse deflection may be written in nondimensional form as

8 =

~ {[(3 + v) - (I - V)~2] (I - p2) + 2(1 + V)(~2 + p2) In p} ,

for ~ :::s; p :::s; 1,

where

8 = wlh, ~ = bla, a = a21Rh

A = (3 + v)(I - ~2) + 2(1 + V)~2 In ~

B = (I - v)(1 - ~2) - 2(1 + v) In ~.

(3)
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It follows that the radial inclination is

-ap, forOsps13;

&' = d& =
dp

-ap[2 - (l -11)132 - (l + 1I)(132/ p2 + 2lnp)]IB, for13 s ps 1.
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(4)

RADIAL DISPLACEMENT AND IN-PLANE FORCES

When elastic deflection of a circular plate is not small in comparison with the plate
thickness, the radial displacements cause in-plane forces that are not negligible. If u,
W are the radial and transverse deflections, the in-plane forces are

N, =~ [dU + ! (dW)2 + 1I!!]
1-112 dr 2 dr r

Eh [u du 11 (dW)2]
No = 1 _ 112 -; + 11 dr + 2 dr .

For equilibrium of forces in the radial direction

d
dr (rN,) - No = O.

So, for equilibrium,

(5)

d2u 1 du u
- + -- - - =
dr2 r dr r2

(l - 11) (dW)2 dw d2w
2r dr - dr . dr2 . (6)

Nondimensional expressions for eqns (5) and (6) are

and

f' + ~ - r = _ h&' (~&' + &") ,
P p2 a 2p

(7)

(8)

where the radial displacement ~ = ulr.
After substituting the plate inclination (4) into the equilibrium eqn (8), we obtain

a differential equation for radial displacement as a function of the radial coordinate

for 0 s p s ~

for ~ s psi,
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where

S. = (l + V)3~4/2

S2 = -4v(l + v)~~ - (I + v)(1 - V)2~4

S3 = - 2(1 + V)2(1 - V)~2

S4 = - 2(1 - 3v) + 4(1 - V2)~2 - (1 - v)2(3 - v)~4/2

S5 = 8(1 - v2 ) - 2(1 - v2 )(3 - v)~~

S6 = -2(1 + v)2(3 - v).

A general solution to this differential equation is determined in the Appendix. This
solution is evaluated there for the required boundary conditions when v = 0.3. If the
punch displacement is such that the contact circle radius is half the plate radius, ~ =
0.5; distributions of transverse and radial displacement 5, ~ and in-plane forces Nn No
are shown in Fig. 3 for v = 0.3 and ~ = 0.5. At this punch displacement, the radial
in-plane force is tensile throughout the entire plate, while the circumferential force No
and radial displacement ~ are positive near the center and negative near the edge. The
circumferential force changes from tensile to compressive at ....tdius p* somewhat larger
than the contact circle radius for ~ = 0.5.

The compressive circumferential in-plane force caused by the inward radial dis­
placement of the edge is the source of radial buckles in the outer portion of the plate.
The radius of the region where compressive circumferential forces prevail is p > p*,
and this increases with increasing punch deflection, as indicated in Fig. 4. The com­
pressed region is larger than the contact circle for 50/a < 0.45 while the die is completely
closed at 50/a = 0.5, where 50 ! wo/h istheratioofcenterdeflectiontoplate thickness.

WRINKLED CONFIGURATION

Wrinkling occurs when the equilibrium configuration changes from the axisym­
metric bowl shape to a bowl containing radial waves in the circumferentiallY com­
pressed region near the edge. We assume this new configuration}s initially a perturbation
from the axisymmetric bowl shape and that this perturbation 5 is a separable function
of radius and azimuth,

Fig. 3. Transverse and radial displacements and in-plane force components when htu = 0.5.
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Fig. 4. Comparison of radii for wrinkled and circumferential compressed regions with the contact
region.
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Because the edge of the plate is free to move away from the support in a direction
opposite to the punch displacement

1\1(0) :s; 0 for 0 :s; 0 :s; 21T. (11)

Thus we assume 1\1(0) is initially a periodic function of the form

1\1(0) = sin(nO) - 1, (12)

where n is the number of wrinkling waves.
The radial function for wrinkle displacement must satisfy the boundary conditions

of zero radial moment at the simply supported edge and compatible displacements at
the inner radius of the wrinkled region, P.... Consequently,

at p = 1. (13)

A function that will satisfy this boundary condition is M,(p) = 0, which requires

v
cI>"(p) + - cI>' (p) = 0

p
for p". :s; p :s; I. (14)

The solution of this differential equation which satisfies the boundary condition of zero
displacements at p = p... is cI> = (pl-v - p~,-V). This function does not satisfy the
boundary condition of compatible radial inclination at P... , but this is the least important
condition in determining the strain energy of the wrinkled configuration. Consequently,
we consider

8 = C(p~-V - pl-v)(I - sin nO)

where C is a positive constant.

for p... :s; p :s; I, (15)

WRINKLING CRITERION

An energy integral method has been used to establish the wrinkling criterion for
circular plates[3]. This method has previously been used to analyse wrinkling of par­
tially clamped circular plates during a deep-drawing process[4].
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The bending energy associated with wrinkling will be

(16)

For the wrinkling configuration (15) and with v = 0.3, the strain energy associated with
bending in the wrinkles will be

(17)

where

F(~, n, PII') = (0.6282n4 - 0.8795n2 + 2.2295)p;;:-0.6 - (1.6667n4 - 1.9133n2

+ 0.7432) + (1.5385n4 - 0.3338n2)p::;7 - (0.5n4 + 0.7n2)p~,;4.

There is also stretching energy associated with wrinkling at these moderately large
displacements. This will be[2]

h2en (' {(08)2 (08 )2}
AUs = 2" Jo Jp". Nr op + Nfj poe pdp de.

With the in-plane forces determined in the Appendix (A3) for v = 0.3,

where

(18)

(19)

G(~, n, PII') = 1.~, {3(1 - V)2 p-2v 12~/a2+ n2(p- v - p~,,- v p-')2 12~/a2}pdp.

(20)

For specified values of the parameters ~, n, plI" values of G have been obtained by
numerical integration.

When the wrinkling region is outside the contact circle PII' > ~, the work done by
external force is unchanged by wrinkling. Consequently, wrinkling of the plate initiates
when the strain energy associated with bending and stretching in the wrinkle config­
uration are equal; that is

F(~, n, PII') = 12a2G(~, n, PII')'

The center deflectioin is related to contact circle radius by eqn (3), so

80 A (3 + v)(1 - ~2) + 2(1 + v)13 2 In 13
-=-=
a 2B 2(1 - v)(I - ~2) - 4(1 + v) In 13

Thus, the deflection where wrinkling begins is

[ ]

1/2
8 A F(I3, n, PII')
° = 2B 12G(I3, n, PII.)

(21 )

(22)

(23)
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In this criterion, both n and PliO are parameters. For each integer value of n, a minimum
value of 80 which satisfies criterion (23) can be obtained by scanning PliO from 0 to 1.
The calculated values for inner radius of buckling depend on the wave number as shown
in Fig. 4. The inner radius which minimises 80 is closer to the center for smaller wave
numbers and increases slightly as deflection increases.

ELASTIC LIMITATION

This analysis is limited to elastic states of stress. If the independent moment and
in-plane force at yield are M" = Yh 2 /6 and N" = Yh respectively, where Y is the
uniaxial yield stress for the plate material, the moments and in-plane forces for the
elastic plate must satisfy a yield criterion

Imi I + I fi 1< 1, i = r, a (24)

where mr = MrIM.. , fr = NrIN.. , and mo = MoIM.. , fo = NoIN...
Yielding first occurs at the center of the plate where

D(1 + v)IR E 1 h
Im I = Yh 2/6 = y' 2(1 - v) R

2 2 - 2-

I f I = 12D(1 + v)a la . S! = 1 ~ !!.... ell
Yh B2 (1 - v) Y R 2 B2 '

and CII (l3. v) is defined in the Appendix. Hence, the yield criterion is

or

h 2(1 - v) Y R a 2CII-< .---._-
a EaR B2

(25)

(26)

This expression provides an elastic limitation to the plate thickness hla for a given
material and plate geometry, (l - v)YIE and RIa. Since both CII IB 2 and 8o/a only
depend on the contact circle radius ~, eqn (26) also defines an elastic-plastic boundary
on the (l/a, 80) map when the material and plate geometry are specified.

DISCUSSION OF NUMERICAL RESULTS

The wrinkling criterion for the smallest wave-numbers n have been computed for
v = 0.3. These punch displacements, where wrinkling initiates, are shown on a (lIa,
80) map, Fig. 5. The region above each curve is where the wrinkled configuration is
the equilibrium configuration for this wave number. The curve ~ = 1 (i.e., b = a) is
an upper limit on punch displacement since this represents complete die closure.

Figure 5 indicates that:
(i) Elastic wrinkling does not occur until the deflection of the plate centre is about

four times the plate thickness;
(ii) For a lE a2IRit > 8, elastic wrinkling initiates at 801h = 4. For a < 8, there is no

elastic wrinkling. In thin plates pressed by a large radius punch, there can finally
be contact with the punch across the entire surface of the plate without wrinkling;

(iii) Wrinkling initiates in a three or four wave mode of deformation;
(iv) If punch displacement is increased after buckling initiates, the mode ofdeformation

may change to a larger wave number.
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Fig. 5. Boundaries of plate parameters that result in elastic wrinkling.

The punch displacement where plastic deformation begins is also shown on Fig.
5 for ElY = 500 and Ria = 5 or 8. Elastic deformations occur with small values of II
a (to the left of the curves) and elastic-plastic deformations occur with larger values
of lIa. For example. with ElY = 500 and Ria = 5. elastic wrinkling develops for 80

= Wolh > 4 if alh > 102. When alh < 102. plastic deformation beginning near the
centre precedes elastic wrinkling.

CONCLUSION

The elastic wrinkling of a circular plate loaded by a spherical punch is caused by
a compressive circumferential in-plane force that develops at large deflections of the
plate. Elastic wrinkling does not occur until wlllh = 4. Then. the wrinkling first occurs
in a three or four wave mode. With increasing punch displacement beyond the initiation
of wrinkling. the deformation mode of wrinkling changes to a larger number of waves.

Elastic wrinkling develops in thin plates stamped by punches with an intermediate
range of punch radius. In thin plates stamped by large radii punches. the plate does
not wrinkle before the contact circle between punch and plate has moved out to the
edge. In thicker plates (alh < 80). plastic deformation occurs before elastic wrinkling
begins. A plastic wrinkling analysis is required for these thick plates.
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APPENDIX

The equilibrium equation has a solution

~1 = ('lIrl + ('1~/p - 1/Q~p~(3 - v)/16l1. for Il::s p::S ~

~~ = C21P + C2~/p + (/lCx~llIB~){IIP-1 In P + I~p In p + I~p (In p)~

+ 14P' + I~p' In p + I,.p'(ln p)~l for ~ ::s p ::s I.

where

I~ = (2S~ - Sd/4

t, = S\/4

14 = (IlS4 - 6S~ + 7S6 )/64

I~ = (2S~ - 3S6 )/4

I" = S,,/8.

For simplicity, consider v = 0.3; thus

II = -0.549~4

12 = - 0.189~2 - 0.319~4

I~ = -0.592~2

14 = - 1.706 + 0.706~2 - 0.083~4

I~ = 2.621 - 0.614~2

I" = - 1.141.

1003

(AI)

The constants in the solution may be determined from the boundary conditions (II) and (12). Hence.
CI2 = O. and for v = 0.3

CII

and

h 0
2

{ .,., .,.,
= - B' 0.776 - 0.403~- + 2.092~- In ~ - 0.593~-(ln ~).

u -

- 0.412~4 + 0.124~4 In ~ + 0.040~~},

Ir a~
C~I = - -:; {1l.776 + 1.902~~ - 1.027~4 + 0.443~4 In ~ + 0.040~"}

u B-

" a
2

C22 = - B' {-0.682~4 + O.1l23~4 In ~ + 0.074~"}.
u -

Consequently, the in-plane forces in eqn (18) will be

12Da2 - , ,
N, = --:;--B' {I.3C II - 0.057B-p-},

II" -

12Da2
- , 2

N 8 = -2B' {I.3CI1 - 0.17IB-p},
u -

(A2)

(A3)

for 0 S P ::s ~, and

12Da2
{- - , 2N, = 1/2B 2 I.3C21 - 0.7C~2 + 13.3/4 + I~)p- + (3.3h + 2/,,)p In p

+ 3.31"p2(1n p)2 + 12 + (1.312 + 21~) In p + 1.31~(ln p)2

+ liP 2 - 1l.7/1P ~ In p + ~ r-2 + O.7~2 + 2.6 In p + 1.3 ::rl '
12Da2

{- - , ,
Nil = --:;--B' I.3C21 + 1l.7('22 + (1.9/4 + 1l.3/~)p- + (1.9/~ + 0.6/,,),,: In p

u- -

+ 1.9/"p2(1n p)2 + 0.312 + (1.312 + 0.6/)) In p + 1.3/)(ln p)2

+ 0.3/IP-2 + 0.7/Ip-2In p + 0.15p2 [ -2 + 0.7~2 + 2.6 In p +


